In Figure 3 the outputs of PAMKE and FAMKE are the same for ReBd >-0.37. At
this point the convergence test fails and FAMKE then calculates the attenuation for
one less knife-edge (the portion of the dashed curve labeled Neff =4}, -~ Similar
failures occur at -0.42 and -0.62, resulting in the discontinuities at these
values. It can be seen that differences in attenuation from the exact curve as
calculated by PAMKE are always less than 1.5 dB.

The partitioning procedure described in this section provides a means of calcu-
lating the MKE attenuation function (equation (28)) for any knife-edge heights
without concern for the problems of discontinuities or significant figure loss.
Details of attenuation variation even in the interference region can thus be shown
for any combination of knife-edges.

4, DISCUSSION

The derivation of the MKE function by Fresnel-Kirchhoff theory as used in this
paper implies certain restrictive conditions regarding the physics of the problem,
e.g., perfectly absorbing half-screens, plane wave propagation, kr>>1, and path
difference approximations. However, as a mathematical function, its numerical
evaluation may be accomplished even when the geometric parameters (h and r) tend to
unrealistic physical values. For instance the use of partitioning provides valid
answers for any knife-edge heights subject only to computer limitations. With
regard to separation distances, the limitations are more inherent in the
computational algorithm.

Mathematically, the MKE function can be evaluated for separation distances
ranging from zero to infinity. This is apparent when closed form solutions of the
function are available. For example, Vogler (1982) has derived the attenuation for
three knife-edges under the condition el=92=e3=0:

1 1

- .
ap + tan ‘3, + tan ‘ag i ” (37)

E/E, (1/8)[1+(2/m) tan

[r1(r3+r4)/r2rt]1/2, a, = [(r]+r2)r4/r3rt]1/2 ,

4

il

ay [r1r4/(r2+r3)rt]1/2 b by = r1+r2+r3+r4 .

For r, On.rqe® 0, (37) reduces to the known expression for a double knife-edge. For
Ty and ry = 0, (E/EO)=1/2'which is the value for a single knife-edge.
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When Fo=rq and risfy take on various combinations of zero and infinity, (37)
gives the same values as obtained from formulas in Lee (1978). In that paper the
MKE attenuation for general N is derived under the conditions: all ei =20
Foseeesly = constant (PO, say); and STRT 0 or », Six cases are given which
prove useful in helping to determine the validity of the computation series in the
MKE computer program. The factor Cy (see equation (9)) is included in each case for
purposes of later discussion.

Case (1): rler+1 7 oo;
E/E, v 1/2, Cy ~ O, (38a)
Case (2): ry 7 ZsPNep T 00Orry > 0sPNgp 7
1 1:3:5ee¢(2N-3) N-2,1/2
E/By V7 g onz) o Oy v (1727°) (38b)
Case (3): ry = FosTheys™ Ocor S G,PN+1 = Fgs
E/Eq ™ 1/2N, €~ (N2V-1y1/2 (38¢)
Case (4): LI e 0;
E/Eq v 1f4(N-1), Gy ™ [(N-1)72N-291/2 (38d)
Case (5): S T
vl = 1/2
E/E, /(N+1), Cn [(N+1)/2 ] (38e)
Case (6): P17 2 ey = TgOr Ty = Tgsalhey ™
1-3-5.-+(2N-1) N-1y1/2
E/EO v 2'4'6"'(2N) L] N Y (]/2 ) & (381:)

Comparisons of attenuation for N=10 as calculated from (38) and as calculated
from program PAMKE are shown in Table 1. The values used in PAMKE when r 1°T11

9

approached 0 or « were 10~ or 10 » respectively; in all cases ro was set equal to

unity.
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Table 1. Attenuation Comparisons for N=10

Case E/Eo(equat.(38)) E/Eo(PAMKE) C10

(1) 0.5000 0 0

(2) 0.09274(20.66dB) 0.08639(21.27dB) 0. 0625
(3) 0.05000(26.02dB) 0.04998(26.02dB) 0.1398
(4) 0.02778(31.13dB) 0.02778(31.13dB) 0.1875
(5) 0.09091(20.83dB) 0.09076(20.84dB) 0.1036
(6) 0.1762(15.08dB) 0.1551(16.19dB) 0.0442

The maximum number of series terms (160) was used in all cases for the PAMKE
calculations. When CN is close to zero, this number of terms is insufficient to
provide a valid answer. In cases (2) and (6) the result is good to about one signi-
ficant figure; however, in cases (3), (4), and (5) PAMKE gives three or more signi-
ficant figures.

The factor CN Provides a good indication as to how closely the series calcula-
tion approaches the correct answer. Table 1 suggests (and other studies tend to
verify) that for CN R 0.1, the attenuation is good to about 0.1dBor better; as C
ranges below 0.1, the accuracy becomes poorer. Note that the CN in (38) increase as
N decreases, which should result in better accuracy. Cases (2) and (6) were run for
N's such that C\=0.125 in each case. For case (2) (N=8), PAMKE gave (E/E )=0.1037
as against an exact value of 0.1047; for case (6) (N=7), PAMKE gave (E/E0)=O.2073
versus the exact value 0.2095. The difference in dB in each case is about 0.09 dB.

The condition, all 6's=0, is a "worst case" situation as far as series conver-
gence within a set number of terms is concerned. This is because repeated integrals
of the error function decrease rapidly as the argument B increases, and fewer terms
are required to assure a given number of significant figures. This fact, combined
with the partitioning procedure, means that the relationship, CN % 0.1, provides a
fairly conservative accuracy test for PAMKE when applied to most propagation paths.

If each and every diffraction angle 81 is large enough such that every Bi>>1’
then the attenuation is well approximated by the first term of the series expansion
derived in the original MKE paper:

i



Ty =0y
E/Ey ~ 2 NCNe NN erfcs.) (39)

= =
—

1

where erfc(z) is the complementary error function as defined in Abramowitz and
Stegun (1964;p.297). Since B;>>1 for i=1,...,N, erfc(Bi) may be replaced by the

first term of its asymptotic expansion and (39) then becomes
I

ENL-UTPN
E/Eq v (20T )7 Cye /By By

-ON

= e (izﬂk)-N/Z(RN+1/r]...rN+1)

(40)

172
/6-'...9N E)

where RN+1 denotes the total path distance, cﬁ is defined in (26), and use has been
made of (2), (9), (21), and (27).

Equation (40) is of interest in that it may also be obtained from the
Geometrical Theory of Diffraction (GTD). If the knife-edge configuration is such
that each edge lies well into the shadow region of the preceding knife-edge, the GTD
diffracted field can be expressed as the product of functions of the form

f(3) w5-l2gmiks: (41a)
D(e,8) = (2 VaTk )'l[csc (6+e)/zfisec (a-e)/zﬂé-"“/“ . (41b)

In the above, s is the slant distance to the edge, € and ¢ are the elevation angles
as measured from the horizontal to the top of the knife-edge at the source and at
the field point, respectively, and the plus or minus signs in the Keller diffraction
coefficient D correspond to vertical or horizontal polarization (Keller, 1962).
Since (e+8)=0, the diffracted field Ug for a single knife-edge according to the

GTD is

Uy = f(s1)D(e1)f(52)

-iks
v (e 1

- -1 -1ks, .
Vs )| ViEmk | (e % Vs (42)

where the approximate expression is valid for
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0 <<8y and 8y = sin oy - (43)

In the case of multiple knife-edges, the diffracted field is the product of
functions, D(®,)f(s;,q):

Ud = f(S])D(el)f(Sz) e D(BN)f(SN+])

-ik(s 4t ... +Sy.4) -1
. -N/2 1 N+1 2
v (d2mk) e (51"'SN+]) e]...eN} , (44)
0 <<@; and 6, ~sing,, 1=1, ..., N. (45)
For a reference free-space field, R&}{Zexp(-ikRN+1), and assuming S;= Ty except

in the phase term where use is made of the approximation in (3), we see that the GTD
attenuation obtained from (44) is identical to (40).

Two widely used approximations to MKE diffraction have been suggested by
Epstein and Peterson (1953) and by Deygout (1966). Both approximations consist
simply of products of single knife-edge attenuation functions, the difference being
in the way the "source" and "receiver" of each knife-edge are determined. If we
designate the single knife-edge function as given in (28) by: AS(B)=(1/2)erfc(B),
the Epstein-Peterson (AEP) and Deygout (AD) approximations can be expressed as

bius A= AL BL) (46)

where B is defined in (21) and B has the same form but with the distances and
diffraction angle e; determined from Deygout's "principle mask" method.

Pogorzelski (1982) has pointed out that, under the conditions (45) where the
GTD equation (40) is valid, AEP has the same © dependence but the r and the phase
dependence differs; AD has the same r and phase dependence but the @ dependence is
different. Thus, asymptotic expressions for the two approximations are
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-
Acp ™ € N(iZwk)—N/ZFEP(r)/e] s By s (47a)

(rytrg)ess (g ey (rgreon) 2 172 N s 2
Fep(r) =
]/D] s N =1
"N -N/2
AD e (i2ﬂk) FD(P)/ei"‘eﬁ s (47b)

Fo(r) = DRy /vy eryn 107

The difference in dB between the approximations and (40), assuming (45), can be

written as
(AEP)dB i (E/EO)dB - 20]09(1/_CN) X (48a)
(AD)dB v (E/EO)dB + ZO]OQ(KI...KN) 3 (48b)

eﬁ = Kmem’ m=1. 5 Ne

Figure 4 compares some of the attenuation formulas discussed in this section.
The propagation path is the same as that assumed for Figure 3, i.e., five evenly
spaced knife-edges with heights simultaneously varying such that all 6's are equal
to the same value. The attenuation in dB is plotted versus this value, 6 in mrad,
for the MKE function (from program PAMKE), the GTD (from equation (40)), and the two
approximations from (46), AEP and Ap.

As expected, the MKE and GTD give the same result for % 0.015 rad. Of
course, for very large 6 the two curves begin to diverge, with the GTD being exact
and the MKE an approximation. For 6 decreasing to zero, no GTD formula for five
knife-edges exists at the present time and the approximation of (40) is not valid in
this region. In fact at 6=0, the attenuation has the value, -20 log(1/6)=15,56dB
(see equation (38e)), whereas (40) goes to -co

The Epstein-Peterson and Deygout approximations both have the value
5(6.02)=30.1dB at 8=0, which exceeds the exact value by 14.5dB. When 6 >> 0, AEP
and Ap approach constant differences from the exact curve as is indicated in (48).
For AEP the difference is 20 Tog(l/C5)=7.27dB; for AD the difference is equal to
20 Tog[3(3/2)(3/2)]=16.6dB.
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Figure 4. Attenuation for the same five knife-edge path as in Figure 3
(a1l 8's equal). Comparisons are shown for MKE, GTD, and
the approximations of Epstein-Peterson and of Deygout.
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